## BAULKHAM HILLS HIGH SCHOOL MARKING COVER SHEET



## YEAR 12 HALF-YEARLY EXTENSION 1 2011

## STUDENT NUMBER:

### TEACHER NAME:

| QUESTION   | MARK |
|------------|------|
| 1          |      |
| 2          |      |
| 3          |      |
| 4          |      |
| 5          |      |
| 6          |      |
| 7          |      |
| TOTAL      | / 84 |
| PERCENTAGE | %    |

## **BAULKHAM HILLS HIGH SCHOOL**



# YEAR 12 HALF-YEARLY MATHEMATICS EXTENSION 1 2011

#### **General Instructions**

- Exam time 2 hours
- Reading time 5 minutes
- Start each question on a new page
- All necessary working should be shown
- Write your student number at the top of each page of your answers
- Board approved calculators may be used
- Write using black or blue pen

Total Marks: 84

Attempt ALL questions

| Qu | Question 1 Start on a new page - (12 marks)                                                                                                                                                                          |   |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| a) | $\int_0^{1.5} \frac{dx}{\sqrt{9-2x^2}}$ leaving your answer in exact form                                                                                                                                            | 3 |
| b) | Solve $\sin 2x = \tan x$ for $0 \le x \le \pi$                                                                                                                                                                       | 3 |
| c) | Solve $x^2 + x + \frac{12}{x^2 + x} = 8$                                                                                                                                                                             | 3 |
| d) | i) Find the derivative of $f(x) = \tan(x^2)$                                                                                                                                                                         | 1 |
|    | ii) Hence or otherwise evaluate $\int_0^1 x \sec^2(x^2) dx$ correct to two decimal places.                                                                                                                           | 2 |
| Qu | estion 2 Start on a new page - (12 marks)                                                                                                                                                                            |   |
| a) | Show that $\frac{d}{dx}\sin^{-1}(\sqrt{x}) = \frac{1}{\sqrt{4x - 4x^2}}$                                                                                                                                             | 3 |
| b) | Find the size of the acute angle, in radians, between the two curves:<br>$y = x^2$ and $y = 8 + \frac{x^2}{2}$ at their point of intersection in the first quadrant. Give your answer correct to two decimal places. | 4 |
| c) | For the function $f(x) = 2 \cos^{-1} 3x$<br>i) Write down the domain and range                                                                                                                                       | 2 |
|    | ii) Draw a neat sketch showing all important features                                                                                                                                                                | 1 |
|    | iii) Calculate the area enclosed by $y = 2 \cos^{-1} 3x$ , the line $x = 0$ and the line $y = 0$                                                                                                                     | 2 |
| Qu | estion 3 (12 marks) - Start a new page                                                                                                                                                                               |   |
| a) | If $y = x^n e^{ax}$ where $a, n$ are coordinates                                                                                                                                                                     |   |
|    | i) find $\frac{dy}{dx}$<br>ii) show that $\frac{dy}{dx} - ay = \frac{ny}{x}$                                                                                                                                         | 1 |
|    | 1) show that $\frac{dx}{dx} - \frac{dy}{x} = \frac{1}{x}$                                                                                                                                                            | 2 |
| b) | Find k if $\int_0^{\frac{\pi}{6}} \frac{\cos x}{1 + \sin x} dx = \log_e k$                                                                                                                                           | 3 |
| c) | Without the aid of a calculator find the exact value of $\tan\left(\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right)$                                                                                                 | 2 |
| d) | The arc of the curve $y = \cos 3x$ between the lines $x = 0$ and $x = \frac{\pi}{6}$ is rotated about the <i>x</i> -axis. Find the volume of the solid formed.                                                       | 4 |

| Qu        | uestion 4 (12 marks) - Start a new page                                                                                                                                                                                                                                                                                             |   |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|           |                                                                                                                                                                                                                                                                                                                                     |   |
| a)        | Joel puts \$500 into a Baulko Bank for 2 years where it earned interest at 6%pa paid<br>twice a year. He withdrew all his money and immediately deposited it into Axel<br>Credit Union where his money earned 8%pa paid quarterly. If he withdrew his<br>savings and had \$633.75, how long was the money kept in the credit union? | 4 |
| b)        | The rate at which a body warms in air is proportional to the difference between the temperature, <i>T</i> , and the constant temperature, <i>T</i> <sub>0</sub> , of the surrounding air. This rate is represented by $\frac{dT}{dt} = k(T - T_0)$ where <i>t</i> is the time in minutes and <i>K</i> is a constant.                |   |
|           |                                                                                                                                                                                                                                                                                                                                     |   |
|           | i) Show that $T = T_0 + Ae^{kt}$ is a solution of $\frac{dT}{dt} = k(T - T_0)$ where A is a constant.                                                                                                                                                                                                                               | 1 |
|           | ii) For a particular body, when $t=0$ , $T=5$ and when $t=20$ , $T=15$ .<br>Given $T_0 = 25$ , find the temperature after a further 30 minutes have elapsed. Give your answer to the nearest degree.                                                                                                                                | 3 |
|           | iii) Briefly describe the behaviour of <i>T</i> as <i>t</i> becomes large.                                                                                                                                                                                                                                                          | 1 |
| c)        | Use mathematical induction to prove that for all integers $n \ge 1$<br>$\cos(x + n\pi) = (-1)^n \cos x$                                                                                                                                                                                                                             | 3 |
| Que       | estion 5 (12 marks) - Start a new page                                                                                                                                                                                                                                                                                              |   |
| a)        | The following eight tiles are taken from a scrabble set:                                                                                                                                                                                                                                                                            | 3 |
| <i>a)</i> | A, A, B, B, C, D, E, F.<br>How many different 4 letter permutations can be formed from these eight tiles?                                                                                                                                                                                                                           |   |
| b)        | Find $\lim_{x \to 0} \frac{\sin \pi x^{\circ}}{x}$                                                                                                                                                                                                                                                                                  | 3 |
| c)        | Find the following indefinite integral $\int \frac{x^2 + 1}{x - 1} dx$                                                                                                                                                                                                                                                              | 2 |
| d)        | Sketch the polynomial function $y = P(x)$ in the domain $-3 \le x \le 3$ given that:<br>y = 0 only when $x = 0$ and 2<br>$y' = 0$ only when $x = \pm 1$<br>y'' = 0 only when $x = -1$ and 0<br>y'' < 0 only when $-1 < x < 0$                                                                                                       | 4 |

| Que | puestion 6 (12 marks) - Start a new page                                                                                                                                                                                |   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| a)  | A, B, C, D, E  are points on the circumference of a circle such that $CD//BEProve that \angle CAB = \angle DAE.$                                                                                                        | 4 |
| b)  | <ul> <li>P(2ap, ap<sup>2</sup>) is a point on the parabola x<sup>2</sup> = 4ay</li> <li>i) Show that the equation of the normal to the curve of the parabola at the point P is x + py = 2ap + ap<sup>3</sup></li> </ul> | 2 |
|     | ii) Find the coordinates of the point $Q$ where the normal at $P$ meets the $y$ -axis                                                                                                                                   | 1 |
|     | iii) Find the coordinates of the point $R$ which divides $PQ$ externally in the ratio 2: 1                                                                                                                              | 2 |
|     | iv) Find the Cartesian equation of the locus of <i>R</i> and describe the locus in geometrical terms                                                                                                                    | 3 |

### QUESTION 7 ON NEXT PAGE

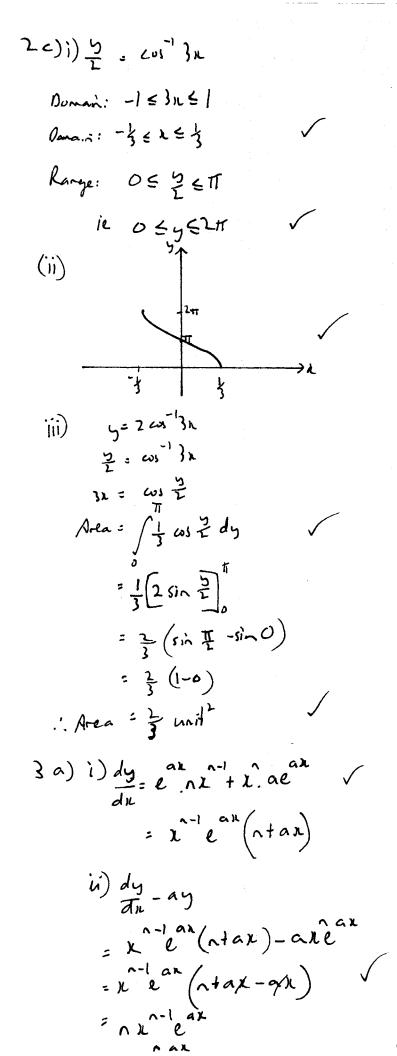
| Que | estion 7 (12 marks) - Start a new page                                                                                                                                                                                                                                                                                                                                     |        |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| a)  | Given that $\sin^{-1} x$ , $\cos^{-1} x$ and $\sin^{-1}(1 - x)$ have values between 0 and $\frac{\pi}{2}$<br>i) Show that $\sin(\sin^{-1} x - \cos^{-1} x) = 2x^2 - 1$<br>ii) hence or otherwise solve the equation<br>$\sin^{-1} x - \cos^{-1} x = \sin^{-1}(1 - x)$                                                                                                      | 2<br>2 |
| b)  | The diagram shows two touching circles with centres <i>P</i> and <i>Q</i> . The circle with centre <i>P</i> has a radius of 4 units and touches the <i>y</i> -axis at <i>R</i> . The circle with centre <i>Q</i> has a radius of 3 units and touches the <i>x</i> -axis at <i>S</i> .<br><i>PQ</i> produced meets the <i>x</i> -axis at <i>T</i> and $\angle QTS = \theta$ |        |
|     | i) Show that $OR = 3 + 7 \sin \theta$ and $OS = 4 + 7 \cos \theta$                                                                                                                                                                                                                                                                                                         | 2      |
|     | ii) Show that $RS^2 = 42 \sin \theta + 56 \cos \theta + 74$                                                                                                                                                                                                                                                                                                                | 2      |
|     | iii) Hence express $RS^2$ in the form $74 + r \cos(\theta - \alpha)$<br>Clearly stating the values of $r$ and $\alpha$                                                                                                                                                                                                                                                     | 3      |
|     | iv) Find the maximum lengths of <i>RS</i> and the value of $\theta$ for which this occurs.                                                                                                                                                                                                                                                                                 | 1      |

### **End of Paper**

2011 Ext 1 HY SOLUTIONS TOMMUNIC (AT)  
a) = 
$$\int \frac{1}{\sqrt{2}} \frac{d \lambda}{\sqrt{2} - \chi^2}$$
  
=  $\frac{1}{\sqrt{2}} \left[ \sin^{-1} \left( \frac{51 \lambda}{\sqrt{2} - \chi^2} \right)^{1/5} \right]_{0}^{1/5}$   
=  $\frac{1}{\sqrt{2}} \left[ \sin^{-1} \frac{1}{\sqrt{2} - \chi^2} \right]_{0}$ 

d)) 
$$f(k) = \sum \operatorname{sec}(x^{1})$$
  
ii)  $f(k) = \sum \operatorname{sec}(x^{1}) dn$   
 $= \frac{1}{k} [\tan(x^{1})]^{1}$   
 $= \frac{1}{k} (\tan 1 - \tan 0)$   
 $= 0.78 (2ap)$   
ii)  $f(k^{1})$   
 $= \frac{1}{\sqrt{1-k^{1}}} \times \frac{1}{k} x^{-k}$   
 $= \frac{1}{\sqrt{1-k^{1}}} \times \frac{1}{k} x^{-k}$   
 $= \frac{1}{\sqrt{4x-4x^{1}}}$   
b)  $\chi^{1} = 8 + \frac{k^{1}}{2}$   
 $\chi^{2} = 16 + k^{1}$   
 $\chi^{2} = 16 + k^{2}$   
 $\chi^{2$ 

and part of the state



 $= \frac{ny}{y} \checkmark$  $dy = ay = \frac{ny}{n}$ 36) Julie Cosn du = [log (Hsinn)]  $= \log \left( 1 + \sin \frac{\pi}{6} \right) - \log \left( 1 + \sin 0 \right)$ = log (1+1) - log 1 = log (1.5) : k=1.5 3C)  $\tan\left(\omega_{1}^{-1}\left(-\frac{1}{2}\right)\right)$ = tan (TT-T) =-tan (IT) = -1 -1 3d) V= TI (g'dr = TT 5 cost 3 n d n = TT Scos 62 +1 die  $= \frac{1}{2} \left[ \frac{\sin 6\lambda}{\lambda} + \lambda \right]^{1/4}$  $= \frac{11}{12} \left( \sin 6x + 6x \right)^{\frac{1}{2}}$  $= \frac{\pi}{h} \left[ \left( \sin \pi \pi \right) - \left( \sin \theta + \theta \right) \right]$ = #

4 a) let A be mound after a brackle  

$$r = 3\% \text{ period}$$

$$A_{4} = 500 (1.01)^{4}$$

$$T = 21^{7} - 20^{10}$$

$$(23) -75 = (1.02)^{7}$$

$$(23) -75 = (1.02)^{7}$$

$$(23) -75 = (1.02)^{7}$$

$$(23) -75 = (1.02)^{7}$$

$$(23) -75 = (1.02)^{7}$$

$$(23) -75 = (1.02)^{7}$$

$$(23) -75 = (1.02)^{7}$$

$$(24) -31 (1.02)^{7}$$

$$(25) -75 = (1.02)^{7}$$

$$(25) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02)^{7}$$

$$(26) -75 = (1.02$$

$$\begin{split} S = \sum_{k=1}^{\infty} |G_{k}_{k}| = d_{k} \quad \text{there of information of the same is a state of$$

------

Equation of normal:  

$$y - ap^{k} - \frac{1}{p} (k - lap)$$

$$py - ap^{k} - nl lap$$

$$p -$$

•

